Utility 1

HMS+

Programmer: Dr. Bill Hazelton

Date: October, 2007.

Line	Instruction	Display	User Instructions
C001	LBL C		Enter first angle. Press ENTER.
C002	HMS→		Enter second angle. Press XEQ C ENTER.
C003	x <> y		
C004	HMS→		(Angles must be in DDD.MMSS format)
C005	+		
C006	→HMS		
C007	RTN		Angle sum displayed (in HP notation)

Notes

- (1) General program to add two angles, azimuths or directions in DDD.MMSS format (HP notation), and produce a result in the same format.
- (2) Key in the first angle. Press ENTER. Key in the second angle. Stack will contain:

Stack Register	Contents
Т	
Z	
Y	First angle in D.MS (line 1)
Х	Second angle in D.MS (line 2)

Press XEQ C ENTER. The sum of the two angles in HP notation will be in the X register (line 1)

(3) Negative values will work correctly.

Sample Computation

123° 45' 56" + 321° 54' 32" = 445° 40' 28"

Storage Registers Used

None

Labels Used

Label C Length = 21 Checksum = F341

Utility 2

HMS-

Programmer: Dr. Bill Hazelton

Date: October, 2007.

Line	Instruction	Display	User Instructions
D001	LBL D		Enter first angle. Press ENTER.
D002	HMS→		Enter second angle. Press XEQ D ENTER.
D003	x <> y		
D004	HMS→		(Angles in DDD.MMSS format)
D005	x <> y		
D006	-		
D007	→HMS		
D008	RTN		Angle sum displayed (in HP notation)

Notes

- (1) General program to get the difference between two angles, azimuths or directions in DDD.MMSS format (HP notation), and produce a result in the same format.
- (2) Key in the first angle. Press ENTER. Key in the second angle. Stack will contain:

Stack Register	Contents
Т	
Z	
Y	First angle in DMS (line 1)
X	Second angle in DMS (line 2)

Press XEQ D ENTER. The difference between the two angles in HP notation will be in the X register. The second angle will be subtracted from the first.

(3) Negative values will work correctly.

Sample Computation

321° 54' 32" – 123° 45' 56" = 198° 08' 36"

Storage Registers Used

None

Labels Used

Label **D** Length = 24 Checksum = E0E0

Enter Vector with D.MMSS Azimuth for Complex Number

Programmer: Dr. Bill Hazelton

Date: October, 2007. Mnemonic: V for Vector Building

Line	Instruction	Display	User Instructions
V001	LBL V		Press XEQ V ENTER.
V002	10		
V003	STO I		
V004	RCL A		
V005	STO (I)		► STO (I) ((I) is on the zero key)
V006	1		
V007	STO + I		
V008	RCL D		
V009	STO (I)		
V010	1		
V011	STO + I		
V012	INPUT A	A?	Prompts for azimuth in D.MMSS
V013	RCL A		
V014	HMS→		
V015	STO A		
V016	INPUT D	D?	Prompts for distance (D?)
V017	RCL A		
V018	COS		
V019	$RCL \times D$		
V020	RCL A		
V021	SIN		
V022	$RCL \times D$		
V023	0 i 1		[Key in as 0, then i, then 1, press ENTER]
V024	×		
V025	+		
V026	STO (I)		
V027	10		
V028	STO I		
V029	RCL (I)		
V030	STO A		
V031	1		
V032	STO + I		
V033	RCL (I)		
V034	STO D		
V035	1		
V036	STO + I		
V037	CLSTK		
V038	RCL (I)		
V039	RTN		Complex number now in stack in X

Notes

- (1) A program that allows the user to enter a vector as two separate components, azimuth and distance, with the azimuth in D.MMSS (HP format), and have it converted to a complex number, with the azimuth component in decimal degrees.
- (2) Calculator should be set in DEGREES mode. Press MODE, then 1.
- (3) Because the calculator uses data entry into the A and D storage registers to allow simple prompting, there is the potential of this program deleting any data already in those storage registers. This could be a problem if this program was called as a sub-routine from within another program. To avoid this problem, the program copies the contents of storage register A to storage register 10, and the contents of storage register D to storage register 11. At the conclusion of the program, the values are copied back into storage registers A and D.
- (4) Because the program replaces everything that was on the stack before it ran, the stack is cleared of all data before the result of the calculation is returned to the stack.
- (5) While copying back the contents of registers 10 and 11, the program stores the result of the calculation in storage register 12.
- (6) If using a program that requires storage registers 10, 11 and 12, change the value of 10 in lines V002 and V027 to a suitable number, so that the set of three storage registers selected aren't used elsewhere.

Operation

Press XEQ V ENTER.

The calculator prompts with A? to enter the azimuth in degrees, minutes and seconds (HP notation). Key in the azimuth and press R/S.

The calculator prompts with D? to enter the distance. Key in the distance and press R/S.

The calculator displays the complex number representing the vector in the X register, or line 2 of the display. The remainder of the stack is zeros.

Examples

- 1. 63° 15' 47" and 105.528 will give a complex number of 105.5280 θ 63.2631 in polar mode (with FIX 4 set for the display), or 47.4765 i 94.2451 in rectangular mode.
- 2. 128° 15' 47" and 105.528 will give a complex number of 105.5280 θ 128.2631, or -65.3506 i 82.8580.
- 3. $237^{\circ} 15' 47''$ and 105.528 will give a complex number of 105.5280 θ –122.7369, or –57.0677 i –88.7662.
- 4. $333^{\circ} 15' 47''$ and 105.528 will give a complex number of 105.5280 θ –26.7369, or 94.2451 i –47.4765.
- 5. 397° 15' 47" and 105.528 produce 105.5280 0 37.2631, or 83.9859 i 63.8946.

Storage Registers Used

- **D** Stores the distance value.
- **I** Used to store the value for indirect addressing of registers 10, 11 and 12.
- 10 Temporary storage for the contents of storage register A while the program runs.
- 11 Temporary storage for the contents of storage register D while the program runs.
- 12 Temporary storage for the answer while copying back A and D.

Labels Used

Label V Length $= 120$ Checksum $= 39Ff$	Label V	Length = 128	Checksum = 39FE
--	---------	----------------	-----------------

Extract Real and Imaginary Parts of a Complex Number

Programmer: Dr. Bill Hazelton

Date:October, 2007.Mnemonic:X for eXtract Co-ordinates

Line	Instruction	Display	User Instructions
X001	LBL X		Press XEQ X ENTER.
X002	10		
X003	STO I		
X004	R↓		
X005	STO (I)		STO (I) ((I) is on the zero key)
X006	ARG		
X007	COS		
X008	RCL (I)		
X009	ABS		
X010	×		
X011	RCL (I)		
X012	ARG		
X013	SIN		
X014	RCL (I)		
X015	ABS		
X016	×		
X017	RTN		Components now on stack

Notes

- (1) The program is designed to operate with the complex number on the stack in the X register (line 2 of the display).
- (2) The program stores the vector in storage register 10 for quick retrieval during operation. If this storage register is in use, change the value in line X002 to a suitable number that doesn't clash with other needs.
- (3) The program will work regardless of the display mode for complex numbers, and regardless of the angle unit mode of the calculator.
- (4) The program will over-write values in the stack prior to it being called.

Operation

- (1) Put the complex number into the X register on the stack, either by keying it in, or by recalling it there from wherever it is stored.
- (2) Press XEQ X ENTER. The program returns the real (or Northing or Y) component or co-ordinate to the Y register (line 1 of the display), and the imaginary part or co-ordinate (or Easting or X) to the X register (line 2 of the display).

Examples

- 1. The complex number 123.0000 i 456.0000 is on the stack. The result is 123.0000 in the Y register and 456.000 in the X register.
- 2. The complex number 100.0000 θ 45.0000 is on the stack. The result is 70.7107 in the Y register and 70.7107 in the X register.
- 3. The complex number 100.0000 θ 230.0000 is on the stack. The result is -64.2788 in the Y register and -76.6044 in the X register.

Storage Registers Used

- **I** Used for the indirect addressing of storage register 10.
- 10 Used to store the complex number during operations.

Labels Used

Label X Length = 53 Checksum = C46D

Enter Vector with D.MMSS Azimuth for Complex Number, but check for a negative distance

Programmer: Dr. Bill Hazelton

Date:December, 2007.Mnemonic:W for Vector Wrangling

Line	Instruction	Display	User Instructions
W001	LBL W		Press XEQ W ENTER.
W002	10		
W003	STO I		
W004	RCL A		
W005	STO (I)		STO (I) ((I) is on the zero key)
W006	1		
W007	STO + I		
W008	RCL D		
W009	STO (I)		
W010	1		
W011	STO + I		
W012	INPUT A	A?	Prompts for azimuth in D.MMSS
W013	RCL A		
W014	HMS→		
W015	STO A		
W016	INPUT D	D?	Prompts for distance (D?)
W017	RCL D		
W018	$x \ge 0$?		
W019	GTO W023		
W020	ABS		
W021	STO D		
W022	SF 3		
W023	RCL A		
W024	COS		
W025	$RCL \times D$		
W026	RCL A		
W027	SIN		
W028	$RCL \times D$		
W029	0 i 1		[Key in as 0, then i, then 1, press ENTER]
W030	×		
W031	+		
W032	STO (I)		
W033	10		
W034	STO I		
W035	RCL (I)		
W036	STO A		
W037	1		
W038	STO + I		

W039	RCL (I)	
W040	STO D	
W041	1	
W042	STO + I	
W043	CLSTK	
W044	RCL (I)	
W045	RTN	Complex number now in stack in X

Special Note

This program is designed to work with the B program (Closure 5) that computes a traverse closure and area, but allows for curves in the polygon boundary. In the Closure 5 program, the way to signal that an entered side is a chord is to enter a negative distance. This would ordinarily result in a complex number that was perfectly valid for computation, which meant that there was no simple way to signal the entry of a chord. The V program (Utility 3) was modified to check if the distance was negative, and if so, to set Flag 3, take the absolute value of the distance, and then proceed as before. The Closure 5 program checks if Flag 3 is set when the W sub-program returns, and processes the line based on the state of Flag 3.

Notes

- (1) A program that allows the user to enter a vector as two separate components, azimuth and distance, with the azimuth in D.MMSS (HP format), and have it converted to a complex number, with the azimuth component in decimal degrees. If the distance entered is negative, the value is made positive and Flag 3 is set to indicate the negative distance.
- (2) Calculator should be set in DEGREES mode. Press MODE, then 1.
- (3) Because the calculator uses data entry into the A and D storage registers to allow simple prompting, there is the potential of this program deleting any data already in those storage registers. This could be a problem if this program was called as a sub-routine from within another program. To avoid this problem, the program copies the contents of storage register A to storage register 10, and the contents of storage register D to storage register 11. At the conclusion of the program, the values are copied back into storage registers A and D.
- (4) Because the program replaces everything that was on the stack before it ran, the stack is cleared of all data before the result of the calculation is returned to the stack.
- (5) While copying back the contents of registers 10 and 11, the program stores the result of the calculation in storage register 12.
- (6) If using a program that requires storage registers 10, 11 and 12, change the value of 10 in lines W002 and W033 to a suitable number, so that the set of three storage registers selected aren't used elsewhere.

Operation

Press XEQ W ENTER.

The calculator prompts with A? to enter the azimuth in degrees, minutes and seconds (HP notation). Key in the azimuth and press R/S.

The calculator prompts with D? to enter the distance. Key in the distance and press R/S.

The calculator displays the complex number representing the vector in the X register, or line 2 of the display. The remainder of the stack is zeros.

Examples

- 1. $63^{\circ} 15' 47''$ and 105.528 will give a complex number of 105.5280 θ 63.2631 in polar mode (with FIX 4 set for the display), or 47.4765 **i** 94.2451 in rectangular mode.
- 2. 128° 15' 47" and 105.528 will give a complex number of 105.5280 θ 128.2631, or -65.3506 i 82.8580.
- 3. $237^{\circ} 15' 47''$ and 105.528 will give a complex number of 105.5280 θ –122.7369, or –57.0677 i –88.7662.
- 4. $333^{\circ} 15' 47''$ and 105.528 will give a complex number of 105.5280 θ –26.7369, or 94.2451 i –47.4765.
- 5. $397^{\circ} 15' 47''$ and 105.528 will produce 105.5280 θ 37.2631, or 83.9859 i 63.8946.
- 6. $63^{\circ} 15' 47''$ and -105.528 will give a complex number of $105.5280 \theta 63.2631$ in polar mode, or 47.4765 i 94.2451 in rectangular mode. This is not what would be expected in normal mathematical work, but a consequence of always taking the distance to be positive.
- 7. $128^{\circ} 15' 47''$ and -105.528 will give a complex number of 105.5280θ 128.2631, or -63.3506 i 82.8580. Again, not standard mathematically.

Storage Registers Used

- A Stores the azimuth value, initially in D.MMSS, then in decimal degrees.
- **D** Stores the distance value.
- **I** Used to store the value for indirect addressing of registers 10, 11 and 12.
- 10 Temporary storage for the contents of storage register A while the program runs.
- 11 Temporary storage for the contents of storage register D while the program runs.
- 12 Temporary storage for the answer while copying back A and D.

Labels Used

```
Label W Length = 146 Checksum = A1A3
```