## Roots of Complex Numbers

Programmer: Jackson Reid (with additions by Bill Hazelton)
Date: May, 2008. Version: $1.0 \quad$ Mnemonic: $\quad \mathbf{R}$ for Complex Roots

| Line | Instruction | User Instructions |
| :---: | :---: | :---: |
| R001 | LBL R | $\stackrel{\text { LBL R }}{ }$ |
| R002 | CLSTK | $\stackrel{r}{r}$ CLEAR 5 |
| R003 | FS? 10 | $\checkmark$ FLAGS 3.0 |
| R004 | GTO R008 |  |
| R005 | SF 1 | $\leftarrow$ FLAGS 11 |
| R006 | SF 10 | $\rightarrow$ FLAGS 1.0 |
| R007 | GTO R009 |  |
| R008 | CF 1 | $\leftarrow$ FLAGS 21 |
| R009 | COMPLEX ROOT | (Key in using EQN RCL C RCL O, etc.,) |
| R010 | PSE | $\stackrel{\square}{ } \rightarrow$ PSE |
| R011 | ENTER Z | (Key in using EQN RCLE RCL N, etc.,) |
| R012 | PSE | $\rightarrow$ PSE |
| R013 | INPUT Z | $\leftarrow$ INPUT Z |
| R014 | ENTER N | (Key in using EQN RCL E RCL N, etc.,) |
| R015 | PSE | $\rightarrow$ PSE |
| R016 | RAD | MODE 2 |
| R017 | INPUT N | $\leftarrow$ InPUT N |
| R018 | 1 |  |
| R019 | - |  |
| R020 | STO L | $\stackrel{\text { STO L }}{ }$ |
| R021 | RCL Z |  |
| R022 | ABS | $r$ ABS |
| R023 | STO R | $\stackrel{\text { STO R }}{ }$ |
| R024 | RCL Z |  |
| R025 | ARG | 4 ARG |
| R026 | STO A | $\rightarrow$ STO A |
| R027 | RCL R |  |
| R028 | RCL N |  |
| R029 | ${ }^{\mathrm{x}} \sqrt{\mathrm{y}}$ | $\leftarrow{ }^{x} \sqrt{y}$ |
| R030 | STO B | $\stackrel{\text { STO B }}{ }$ |
| R031 | RCL A | [The i key, next to the cursor keys] |
| R032 | $\mathrm{RCL} \div \mathrm{N}$ |  |
| R033 | COS |  |
| R034 | RCL A |  |
| R035 | $\mathrm{RCL} \div \mathrm{N}$ |  |
| R036 | SIN |  |
| R037 | i |  |
| R038 | $\times$ |  |
| R039 | + |  |

HP-35s Calculator Program
Roots of Complex Numbers

| Line | Instruction | User Instructions |
| :---: | :---: | :---: |
| R040 | RCL× B |  |
| R041 | STO C | $\rightarrow$ STO C |
| R042 | FIRST ROOT | (Key in using EQN RCL F RCL I, etc.,) |
| R043 | PSE | $\stackrel{\text { PSE }}{ }$ |
| R044 | VIEW C | $\leftarrow$ VIEW C |
| R045 | RCL L |  |
| R046 | 1 |  |
| R047 | STO- L | $\stackrel{\text { STO- L }}{ }$ |
| R048 | $\pi$ | $\leftarrow \pi$ |
| R049 | 2 |  |
| R050 | $\times$ |  |
| R051 | STO+ A | $\stackrel{\mathrm{STO}}{ }+\mathrm{A}$ |
| R052 | RCL A |  |
| R053 | $\mathrm{RCL} \div \mathrm{N}$ |  |
| R054 | COS |  |
| R055 | RCL A |  |
| R056 | $\mathrm{RCL} \div \mathrm{N}$ |  |
| R057 | SIN |  |
| R058 | i | [The i key, next to the cursor keys] |
| R059 | $\times$ |  |
| R060 | + |  |
| R061 | RCL× B |  |
| R062 | STO D | $\rightarrow$ STO D |
| R063 | NEXT ROOT | (Key in using EQN RCL N RCL E, etc.) |
| R064 | PSE | $\stackrel{\text { PSE }}{ }$ |
| R065 | VIEW D | $\leftarrow$ VIEW D |
| R066 | RCL L |  |
| R067 | $\mathrm{x}>0$ ? | $\rightarrow \quad \mathrm{x}$ ? 04 |
| R068 | GTO R045 |  |
| R069 | PROGRAM END | (Key in using EQN RCL P RCL R, etc.) |
| R070 | PSE | $\stackrel{\square}{r}$ PSE |
| R071 | FS? 1 | $\leftarrow$ FLAGS 31 |
| R072 | CF 10 | $\leftarrow$ FLAGS 2.0 |
| R073 | DEG | MODE 1 |
| R074 | RTN | $\checkmark$ RTN |

## Notes

(1) A simple program to calculate the roots of a complex number using De Moivre's formula.
(2) The user provides the complex number using the standard calculator entry methods, i.e., $\mathfrak{R}$ i $\mathfrak{I}$, or r $\theta$ a. The 'number' of the roots to be calculated is then entered.
(3) The results (the various roots) are shown as complex numbers in the current complex display mode of the calculator. If the display is in polar complex display mode, the displayed angles (the value after the $\theta$ ) will be in radians.
(4) The program works largely in radians mode, but returns to degrees mode at the end of the program. If the program is stopped before coming to the end, the calculator may remain in radians mode.
(5) The program sets Flag 10, so that equations can be displayed as prompts. The program completes by returning Flag 10 to its setting when the program began.

## Theory

De Moivre's formula can be written as:

$$
(\cos x+i \sin x)^{n}=\cos (n x)+i \sin (n x)
$$

The formula can be used to find the $n$th roots of a complex number, as follows. If $z$ is a complex number, written in polar form as:

$$
z=r(\cos x+i \sin x)
$$

then:

$$
z^{\frac{1}{n}}=[r(\cos x+i \sin x)]^{\frac{1}{n}}=r^{\frac{1}{n}}\left[\cos \left(\frac{x+2 k \pi}{n}\right)+i \sin \left(\frac{x+2 k \pi}{n}\right)\right]
$$

where $k$ is an integer, and to get the $n$ different roots of $z$ one only needs to consider values of $k$ from 0 to $n-1$.

## Running the Program

Press XEQ R, then press ENTER.
Program displays COMPLEX ROOTS briefly, then ENTER Z briefly, then prompts:
Z?
Key in the complex number, or if using a real number, key it in as a complex number, then press R/S. For example, to find the roots of the real number +1 , key in $1 \mathbf{i} 0$, then press R/S.

Program displays ENTER N briefly, then prompts:
N ?
Key in the value of $n$, the integer number of the roots to be obtained (i.e., finding the $n$th root). Press R/S. For example, key in 8 and press R/S/

The calculator briefly displays RUNNING, then briefly displays FIRST ROOT, then stops and shows the first root calculated as a complex number. In this case, if the calculator is in rectangular complex number display mode, the display will show:

$$
\mathrm{C}=\quad 1.0000 \mathbf{i} 0.0000
$$

The first root of +1 is, simply, 1 . Press R/S to continue.

The calculator briefly displays RUNNING, then briefly displays NEXT ROOT, then stops and shows the next root calculated as a complex number. The display will show (if in rectangular mode):
$\mathrm{C}=$

$$
0.7071 \mathbf{i} 0.7071
$$

This is equivalent to $\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}$. Press R/S to continue.

The calculator briefly displays RUNNING, then briefly displays NEXT ROOT, then stops and shows the next root calculated as a complex number. The display will show (if in rectangular mode):

$$
\mathrm{C}=\quad-5.1034 \mathrm{E}-12 \mathbf{i} 1.0000
$$

This is equivalent to i. Press R/S to continue.

The calculator briefly displays RUNNING, then briefly displays NEXT ROOT, then stops and shows the next root calculated as a complex number. The display will show (if in rectangular mode):
$\mathrm{C}=$

$$
-0.7071 \mathbf{i} 0.7071
$$

This is equivalent to $-\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}$. Press $\mathrm{R} / \mathrm{S}$ to continue.
The calculator briefly displays RUNNING, then briefly displays NEXT ROOT, then stops and shows the next root calculated as a complex number. The display will show (if in rectangular mode):

$$
\begin{aligned}
\mathrm{C}= & -5.1034 \mathrm{E}-12 \mathbf{i} 1.0000
\end{aligned}
$$

This is equivalent to i. Press R/S to continue.
The calculator briefly displays RUNNING, then briefly displays NEXT ROOT, then stops and shows the next root calculated as a complex number. The display will show (if in rectangular mode):

$$
\mathrm{C}=\quad-1.000 \mathbf{i}-1.0207 \mathrm{E}-11
$$

This is equivalent to -1 . Press $R / S$ to continue.
The calculator briefly displays RUNNING, then briefly displays NEXT ROOT, then stops and shows the next root calculated as a complex number. The display will show (if in rectangular mode):

$$
\mathrm{C}=\quad-0.7071 \mathbf{i}-0.7071
$$

This is equivalent to $-\frac{\sqrt{2}}{2}-i \frac{\sqrt{2}}{2}$. Press $\mathrm{R} / \mathrm{S}$ to continue.
The calculator briefly displays RUNNING, then briefly displays NEXT ROOT, then stops and shows the next root calculated as a complex number. The display will show (if in rectangular mode):

$$
\mathrm{C}=\quad 1.5310 \mathrm{E}-11 \mathbf{i}-1.0000
$$

This is equivalent to -i . Press R/S to continue.
The calculator briefly displays RUNNING, then briefly displays NEXT ROOT, then stops and shows the next root calculated as a complex number. The display will show (if in rectangular mode):

$$
\mathrm{C}=\quad 0.7071 \mathbf{i}-0.7071
$$

This is equivalent to $\frac{\sqrt{2}}{2}-i \frac{\sqrt{2}}{2}$. Press $\mathrm{R} / \mathrm{S}$ to continue.
The calculator displays PROGRAM END and finishes, resetting the Flag 10 and the angular mode.

## Complex Number Display

Complex numbers in the HP-35s can be displayed in two ways in RPN mode. These are the rectangular mode and polar mode. Which display mode is set depends upon the display setting. To see complex numbers in rectangular form, press $\leftrightarrows$ DISPLAY, then 9 . The $x$ i $y$ mode shows numbers as: 25.3456 i -54.3210

The first part is the real part of the number, and the $i$ separates this from the imaginary part, which is the second part. So the above number would be read as $25.3456-i 54.3210$.

The other display mode, polar, is selected by pressing $\leftarrow$ DISPLAY, then selecting option 10 (scroll up or down to find it). This is shown as $r \theta a$, and shows first the distance, then the angle of this direction as an angle in decimal degrees counter-clockwise from the $\Re$ (real) axis (horizontal axis to the right). If the calculator is in radians mode, the angle is displayed in radians (similarly in grads mode).

The same number as above would be shown as: $59.943060 \theta-64.986744$
where the 59.943060 is the distance, and the -60.986744 is the angle in decimal degrees.
Complex numbers may be entered in either mode, but are displayed in the selected mode. The mode can be set or changed at any time, to suit the user's needs.

## Sample Computations

1. Solve for the 8 th root of 1 . See the solutions in the Running the Program Section.
2. Solve for the 4 th roots of 1 .

Solutions: 1st Root 1 (1i 0)
2nd Root i (0 i 1)
3rd Root $\quad-1(-1 \mathbf{i} 0)$
4th Root $\quad-\mathrm{i}(0 \mathbf{i}-1)$
3. Solve for the 3 rd roots of $3.5+\mathrm{i} 2.6$

Solutions: 1st Root $\quad 1.5968 \mathbf{i} 0.3453$
2nd Root $\quad-1.0974$ i 1.2102
3rd Root $\quad-0.4993$ i - 1.5555
4. Solve for the 3 rd roots of $3.5 \theta 55$ (equivalent to 2.0075 i 2.8670)

| Solutions: | 1st Root | $1.4412 \mathbf{i} 0.4776$ | or | 1.5183 | $\theta 0.3200$ |
| ---: | :--- | :--- | :--- | :--- | :--- |
| 2nd Root | $-1.1342 \mathbf{i} 1.0094$ | or | 1.5183 | $\theta 2.4144$ |  |
| 3rd Root | $-0.3070 \mathbf{i}-1.4869$ | or | 1.5183 | $\theta$ | -1.7744 |

In the first case, the calculator is set to rectangular complex display, and in the second case, it is set to polar complex display. Note that the angles (the value after the $\theta$ ) are in radians.

## Storage Registers Used

A Angular value in the complex number
B Value of $\sqrt[n]{r}$ (i.e., the $n$th root of $r$
C The first root of the complex number, $z$, in complex number format
D Subsequent roots of the complex number, $z$, in complex number format
$\mathbf{L}$ Loop counter, decremented each time through the loop
$\mathbf{N} \quad$ The value $n$, that being the number of roots to be taken
$\mathbf{R} \quad$ The absolute value (or length) of the complex number (or vector), z, i.e., $|z|$
$\mathbf{Z} \quad$ The complex number, $z$, whose $n$ roots are required
Statistical Registers: not used

## Labels Used

Label R Length $=284 \quad$ Checksum $=0467$
Use the length ( $\mathrm{LN}=$ ) and Checksum ( $\mathrm{CK}=$ ) values to check if program was entered correctly. Use the sample computation to check proper operation after entry.

