HP-33S Calculator Program
Closure
Traverse Closure with Co-ordinate Computation
Programmer: Dr. Bill Hazelton
Date: March, 2005, modified May, 2007.

Notes

(1) General closure program that computes co-ordinates for each point around the traverse, as well as traverse closure.
(2) Begin by pressing XEQ M, then enter the starting co-ordinates at the prompts. Note that the current contents of the registers are displayed, but are overwritten by what you enter. If the correct values are already in the registers and shown in X on the stack, pressing R / S accepts them without changing them or entering anything more.
(3) After each side (azimuth and distance) has been entered and processed, the stack holds the following data:

Stack Register	Contents
T	
Z	Number of sides entered
Y	Y co-ordinate of point
X	X co-ordinate of point

(4) After entering and processing the last side of the traverse, enter a negative value for the azimuth of the next line, e.g., -1 . Press R/S. The traverse misclosure is displayed in the stack, thus:

Stack Register	Contents
T	
Z	Number of sides entered
Y	Azimuth of misclosure
X	Length of misclosure

Co-ordinates of points are displayed on the stack, but are not stored in the calculator at all. You have to write these down to record them.
(6) Azimuths are entered and displayed in HP notation, i.e., DDD.MMSS

The misclosure components in X (or E) and Y (or N) can be displayed by recalling $\Sigma \mathrm{y}$ and $\Sigma \mathrm{x}$ using the SUMS menu. (Note these are 'back-to-front.')

Theory

The traverse closure works using conventional resolving of the sides (vectors) into orthogonal components. The co-ordinates of the starting point are stored and added to the accumulated $\Delta \mathrm{X}$ and $\Delta \mathrm{Y}$ values in the statistical registers after each side is computed. The misclosure is converted to an azimuth and distance for the final display. Enter a negative azimuth to trigger the end of the program and the misclosure display.

Traverse Closure with Co-ordinate Computation
Azimuths in HP notation are used. An arbitrary azimuth or whole circle bearings are satisfactory. Plane surveying assumptions apply. The program uses no error checking on entered data.

Sample Computation

Azimuth	Distance	X/E Co-ordinate	Y/N Co-ordinate
$6^{\circ} 53^{\prime} 10^{\prime \prime}$		1000.000	5000.000
$112^{\circ} 37^{\prime} 20^{\prime \prime}$	72.00	1008.633	5071.481
$185^{\circ} 39^{\prime} 50^{\prime \prime}$	102.23	1102.997	5032.158
$181^{\circ} 30^{\prime} 00^{\prime \prime}$	29.04	1100.131	5003.259
$283^{\circ} 54^{\prime} 30^{\prime \prime}$	27.88	1099.401	4975.389

Misclosure: $+0.023 \quad-0.002$

Results	DE	$=0.023$	(in SUMS $\Sigma \mathrm{y}$)
DN	$=-0.002$	(in SUMS $\Sigma \mathrm{x}$)	
Misclosure Length	$=0.023$		
Misclosure Azimuth	$=95^{\circ} 24^{\prime} 15^{\prime \prime}$		

Storage Registers Used

X X co-ordinate of first point
Y Y co-ordinate of first point
Z Set to 360, but set to 0 at the end of the program.
Statistical Registers: $\quad \Sigma \mathrm{x}=$ Current $\Delta \mathrm{Y}$ or $\Delta \mathrm{N}$ from starting point
$\Sigma \mathrm{y}=$ Current $\Delta \mathrm{X}$ or $\Delta \mathrm{E}$ from starting point
$\mathrm{n}=$ Number of sides entered from start

Labels Used

Label M

$$
\begin{array}{ll}
\text { Length }=45 & \text { Checksum }=495 \mathrm{~F} \\
\text { Length }=90 & \text { Checksum }=652 \mathrm{~A}
\end{array}
$$

Label \mathbf{N}
Use the length ($\mathrm{LN}=$) and Checksum ($\mathrm{CK}=$) values to check if program was entered correctly. Use the sample computation to check proper operation after entry.

